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Abstract— We discuss a new reachability problem for
networked controlled system where a master node —the
controller— broadcasts commands to a set of slave nodes,
which must take turn to relay back state measurements. This
problem finds applications in some robotics and intelligent
transportation systems setups. Constraints on communication
demand a coupled design of the controller and the measurement
schedule. We prove that the problem is formally equivalent to
the Pinwheel Problem from scheduling theory, and building
on this result we provide conditions for schedulability and
reachability. The results are illustrated in three numerical
examples.

I. INTRODUCTION

The problem of designing a feedback law to keep a

system’s state within a compact admissible region in the

presence of uncertainties has been studied for over forty

years [1], in countless different scenarios and with dif-

ferent modelling assumptions. The tasks involved in the

computation of the sets reached by the state, under control

and disturbance inputs, are generally known as reachability

problems. Often, reachability is used to provide guarantees

that a system’s state can be indefinitely kept inside an

admissible set or away from a bad set, in a framework

known as safety verification. Problems of reachability and

safety verification have found use in model predictive control

design [2], control for coordination and collision avoidance

of multiagent systems [3], [4], differential games [5], among

others.

More recently, the evolution of embedded communication

and computation devices and the arrival of the Internet

of Things has moved the focus of much control theoretic

research towards distributed versions of the reachability and

verification problems [6]–[8]. In this setting, the designer

faces the additional challenge of handling a control system

where sensing, decision, and actuation are implemented at

physically separate nodes of a network, which interact with

each other through a communication link with non-negligible

physical limitations [9]–[11].

An interesting subset of this broad family of problems,

which has received little attention so far, regards a scenario

where a central decision node is in charge of keeping the state

of a set of independent subsystems within given admissible
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Fig. 1. A Controller and n subsystems share a common channel to
exchange control and measurement data.

sets, receiving measurement data and broadcasting control

commands through a common communication channel, as

in Fig. 1. This is a model, for instance, of remotely sensed

and actuated robotic systems based on CAN communication

or, as we will discuss in our application example, of re-

mote multiagent control setups for intelligent transportation

systems field testing. This scenario shares some similarities

with event driven control [11]. However, in our case the core

problem is to guarantee invariance of the admissible sets

despite the communication constraints, rather than to ensure

stability while minimizing communication. As we will see,

this shift in focus brings about a corresponding shift in the

set of available tools.

In this paper we target a reachability and safety verification

problem, in discrete time, for the above-described networked

control system. This is, to the best of our knowledge, the first

attempt at the formalization and solution of this particular

subclass of networked reachability problems. With respect to

a standard reachability problem, the limitations of the com-

munication channel imply that the controller can measure

only a subset of nodes at any given time. Thus, a suitable

measurement schedule must be designed concurrently with

the control law in order to ensure the proper performance.

We formalize a general model for the control problem class,

and prove that the measurement schedule design problem is

formally equivalent to the Pinwheel Problem from scheduling

theory [12]. This gives us a powerful set of tools to co-design

scheduling and control algorithms, and to provide guarantees

on permanent schedulability, as a function of the dynamics

of each of the systems’ nodes.

We introduce the mathematical model and problem for-

mulation in Sec. II-A. Then, the main theoretical results are

discussed in Sec. III. An application of these results to the

challenge of coordinating a set of remotely actuated agents

is discussed in Sec. IV and V, where our algorithms are

used to design a tracking feedback with guaranteed error

bounds for all remotely controlled agents, and to compute

the (approximate) minimum tracking error bound compatible

with a given set of agents and communication constraints.



II. CENTRALIZED CONTROLLER WITH COMMUNICATION

CONSTRAINTS.

A. Model and notation

Consider a set of q discrete-time time-invariant linear

systems

xi(t+ 1) = Aixi(t) +Biui(t) + Fivi(t), (1)

where xi ∈ R
ni is the state, ui ∈ R

mi the control input,

vi ∈ R
pi an additive bounded noise within the polytope Vi,

defined as

Vi := {vi ∈ R
pi : Eivi ≤ fi},

for some matrix Ei and vector fi of suitable dimension.

For each system i we define an admissible set Ai ⊂ R
ni ,

which describes the set of states within which the state xi

should be kept. The q systems (1) describes the dynamics

of a set of decoupled subsystems, which may represent

independent agents in a multiagent system, or dynamically

decoupled components of a larger plant. We write

x(t+ 1) = Ax(t) +Bu(t) + Fv(t) (2)

the model of the q subsystems together, and call A :=
A1 ×A2 × . . . the admissible set of (2), obtained as the

Cartesian product of the q admissible sets Ai. Letting n :=
∑

ni, m :=
∑

mi, p :=
∑

pi, the above system has

x ∈ R
n, u ∈ R

m, v ∈ R
p, while A, B, and F are block-

diagonal.

Let us assume that (2) is controlled by a central controller,

which stabilizes the system through a full-state static feed-

back law u(k) = −Kx(k), and assume, for the moment, that

the full state x(k) is known to the central controller at each

time step. We thus have the following closed-loop system

x(t+ 1) = (A−BK)x(t) + Fv(t). (3)

The above equation will be modified later to account for

limitations on the state information available to the controller.

B. Reachability and Invariance Properties

We say that S ⊂ R
n is robust invariant for the system

(3), if

∀x(t) ∈ S and ∀ v ∈ V , x(t+ 1) ∈ S.

Let {S} be the set of all robust invariant sets of the above

system. We call the maximal robust invariant set and denote

it by S∞ the maximal, with respect to set inclusion, among

all the robust invariant sets that are subsets of A:

S∞ := max{S ∈ {S} : S ∈ A}.

A robust invariant set S as defined above is guaranteed to

contain a forward-time trajectory of system (3), provided

x(0) ∈ S, regardless of the disturbance v.

For the autonomous system x(t + 1) = f(x(t), v(t))
affected by disturbance v(t), we define the 1-step reachable

set as the set of states that can be reached in one step from

the set of initial states O:

Reachf1 (O) := {x ∈ R
n : ∃x0 ∈ O, ∃v ∈ V , such that

x = f(x0, v)}. (4)

The extension of (4) to a t-step reachable set is straight-

forward. Numerical tools for the calculation of S∞ and

Reachft (O) can be found in [13].

C. Problem formulation

We assume that communication between the central con-

troller and the subsystems is routed through a common

channel (as in Fig. 1), for instance a wireless network

or a CAN link. This poses constraints on the amount of

information that can be exchanged between central controller

and subsystems at each time step. In particular, even though

more challenging assumptions are in principle possible, we

assume that the central controller can broadcast the full

control vector u(t) to all subsystems at each time step, while

only a single subsystem can communicate its state to the

central controller at any given time step. To encode this

constraint, we can proceed as follows. Consider the q square

n× n matrices

C̃1:=





I11 0

022

033

0

.
.
.



, C̃2:=





011 0

I22
033

0

.
.
.



, . . . ,

where the diagonal blocks Iii are identities of dimension

ni while 0ii are zero square matrices of dimension ni, and

consider q more matrices Ĉi := I − C̃i. Call C the set of n
matrices Ci := (C̃i|Ĉi) ∈ {0, 1}n×2n, i = 1, . . . , n. Each

row of Ci sums to 1, and the unit element of each row

identifies whether the corresponding element of x̂ is updated

with a new measure of x, or must be estimated by the central

controller without use of new information.

The closed-loop dynamics (3) with communication con-

straints can then written using the matrices in C as

x(t+ 1) = Ax(t)−BKx̂(t) + Fv(t),

x̂−(t+ 1) = (A−BK)x̂(t),

x̂(t+ 1) = Cδ(t)

(
x(t + 1)
x̂−(t+ 1)

)

, Cδ(t) ∈ C,

(5)

where δ ∈ {1, 2, . . . , n} is a scheduling signal.

The considered setting describes a master-slave control

broadcast network and constrained communication between

slaves and master. We postpone to Sec. IV and V a more

thorough discussion of practical problems that fall within

this framework. At this stage, we can instead identify two

theoretical issues worth of investigation

Problem 1 (Schedulability). Given a controlled system (5),

an admissible set A, along with a set of measurement

matrices C, determine whether, for all x(0) ∈ S∞, there

exists a measurement schedule δ(t) which guarantees x(t) ∈
S∞, ∀ t > 0.

We will say that system (5) is schedulable if Problem 1

has positive answer.



Problem 2 (Measurement schedule design). Given the con-

trolled, schedulable system (5), an admissible set A, a set of

measurement matrices C, and an initial condition x(0) ∈ S∞,

determine a measurement schedule δ(t) which guarantees

x(t) ∈ S∞, ∀ t > 0.

III. MAIN RESULTS

To address Problems 1 and 2, we exploit the similarity of

their structure with that of the Pinwheel Problem, from the

scheduling literature [12], [14].

Notice first of all that Problem 1 is a decision problem,

since its solution is a yes or no answer. An instance I of

Problem 1 is the full set of data (model and initial conditions)

necessary to define the problem. We say that Problem 1

accepts an instance I if its answer to I is yes. Finally, two

decision problems are equivalent if there exists a polynomial-

time mapping of instances of one to the other, and one

accepts an instance I if and only if the other accepts it.

We now define the Pinwheel Problem, and prove its

equivalence with Problem 1.

Consider a subsystem i, and let us assume that xi is

measured at time 0, so that x̂i(0) = xi(0), and that no further

measure is available for t > 0. Then, the evolution of xi

under (5) can then be written as

xi(t+ 1) = Aix(t) −BK (Ai −BiKi)
t
x(0) + Fv(t),

:= f̂i(x(t), v(t)) (6)

Using f̂ from the above equation, and the corresponding

reach operator Reachf̂t (·), we can compute an upper bound

to the time distance between two measurements of xi needed

to guarantee that the state can be kept within Ai despite the

growing estimation error. This is done in Algorithm 1.

Algorithm 1 Computation of αi

1: for all i ∈ 1, . . . , q do

2: compute S∞i.

3: define αi := max{t : Reachf̂i
t (S∞i) ⊆ S∞i}.

4: return {α1, . . . , αq}

We have:

Lemma 1. If xi(0) ∈ S∞i, and xi evolves according to

(6), xi(t) ∈ S∞i, ∀ t ∈ {1, . . . , αi}, while ∃xi(0) ∈
S∞i, {v(0), . . . , v(αi)} : xi(αi + 1) /∈ S∞i

Proof. The statement is a consequence of the definition of

reachable set.

Consider now the following:

Pinwheel Problem (From [14]). Given the set of integers

α1, . . . , αq , determine the existence of an infinite sequence

over the symbols 1, . . . , q such that there is at least one

symbol i within any subsequence of αi consecutive symbols.

In the light of Lemma 1, it is a simple exercise to prove

the following

Theorem 1. Problem 1 and the Pinwheel Problem are

equivalent, with Algorithm 1 as the mapping of instances

of Problem 1 to instances of the Pinwheel Problem.

We can employ results formulated in the scheduling liter-

ature for the Pinwheel Problem to address the solutions of

our Problems 1 and 2. Let us begin with the following result:

Theorem 2 (Theorem 2.1 in [12]). All instances of the

Pinwheel Problem that admit a schedule admit a cyclic

schedule, i.e., a schedule whose symbols repeat periodically.

Hence, if (5) is schedulable, then it is schedulable by a

cyclic schedule. We will denote

δ := {δ(1), . . . , δ(t)}.

a full cycle of such a cyclic schedule. We will use this fact in

the design of solution algorithms to Problem 2. Conditions

for schedulability have been formulated in terms of the

density of the problem instance, which is defined as

ρ(I) :=
∑

i

1

αi

.

While an upper bound to the density guaranteeing schedu-

lability is not known, we have the following sufficient

condition for schedulability:

Lemma 2 (From [15]). All instances I of the Pinwheel

Problem with ρ(I) ≤ 0.7 are schedulable.

Notice that it is easy to construct schedulable instances

with ρ = 1 (for example two subsystems with α1 = α2 =
2), and non-schedulable instances with 0.7 < ρ < 1 (for

example three subsystem with α1 = 2, α2 = 3, α3 = 7,

as we discuss in the examples). We now have a solution to

Problem 1:

Theorem 3 (Solution to Problem 1). Given an instance I of

Problem 1, a necessary condition for schedulability is ρ(I) ≤
1; a sufficient condition for schedulability is ρ(I) ≤ 0.7.

Proof. Using Theorem 1, schedulability of an instance of

Problem 1 corresponds to schedulability of a corresponding

Pinwheel Problem. The necessary condition simply follows

from the fact that the terms 1
αi

in the density function

correspond to the minimum fraction of time instants that

should be allocated to measurement of subsystem i out of

any m =
∏

i αi subsequent time instants. Their sum must

thus be smaller than 1 for an instance to be schedulable. The

sufficient condition follows from Lemma 2.

According to Lemma 2 and Theorem 3, with appropriate

algorithms we can design a cyclic schedule for any instance

of Problem 1 with density ρ ≤ 0.7. Examples of such

algorithms are found, for example, in [15]. For the sake of

simplicity, we report in Algorithm 2 a variation of the algo-

rithm SimpleGreedy, from [12], which applies to instances

with density ρ ≤ 0.5.

Lemma 3 (Theorem 3.1 and Corollary 3.2 in [12]). Algo-

rithm 2 computes a cyclic schedule for any instance I of the

Pinwheel Problem with ρ(I) ≤ 0.5.



Algorithm 2 Measurement scheduling algorithm (input:

α1, . . . , αq , output: δ)

1: define βi := 2j , where j := maxj∈N : 2j ≤ αi

2: order βi so that βi ≤ βi+1

3: define m :=
∏

i βi

4: define a sequence of empty slots indexed 0 through 2m− 1
5: for i := 1 to q do

6: j := smallest index of an empty slot
7: repeat

8: put i into slot j
9: j := j + βi

10: until j ≥ 2m

11: Delete all empty slots
12: Assign to each slot j a vector cj := (cj,1, . . . , cj,q), where cj,l

denotes the number of slots since the last occurrence of l
13: Locate indices s and t that have been assigned identical vectors
14: return δ := the contents of slots s through t− 1

Algorithm 2 finally provides a solution to Problem 2:

Theorem 4 (Solution of Problem 2). For all instances with

ρ(I) ≤ 0.5, a measurement schedule computed through

Algorithm 2 ensures x ∈ A, ∀ t ≥ 0.

Proof. The statement follows from Theorem 1 and Lemma 3.

IV. TRAJECTORY TRACKING

In Sec. III, we have formulated the problem of finding

admissible measurement schedules, which keep the state

trajectories of the system (5) within an invariant set. Such

formulation is next extended to the problem of tracking a

reference trajectory without exceeding a given error bound.

Let xr be the reference state, generated as solution of the

equation xr(t+ 1) = Axr(t) + Bur(t), where the input ur

is designed to give the desired reference. Similarly to (5),

we can define the following closed-loop dynamics under the

measurement schedule δ(t):

x(t+ 1) = Ax(t)−BK(x̂(t) − xr(t)) +Bur(t) + Fv(t),

xr(t+ 1) = Axr(t) +Bur(t),

x̂−(t+ 1) = (A−BK)x̂(t)

x̂(t+ 1) = Cδ(t)

(
x(t + 1)
x̂−(t+ 1)

)

, Cδ(t) ∈ C.

(7)

The system (7) can be rewritten in terms of the actual

tracking error θ = x − xr and estimated tracking error

θ̂ = x̂− xr, as follows

θ(t+ 1) = Aθ(t)−BKθ̂(t) + Fv(t),

θ̂−(t+ 1) = (A−BK)θ̂(t)

θ̂(t+ 1) = Cδ(t)

(
θ(t+ 1)

θ̂−(t+ 1)

)

, Cδ(t) ∈ C.

(8)

The above equation is formally equivalent to (5). Hence, we

can use the results of Sec. III to find δ(t) (i.e., schedule

the communication) such that the error θ remains bounded

within a given box.

Let Θ ∈ R
n be the admissible set of the tracking error θ.

We assume that Θ contains the vector 0. As discussed

in Sec. II-B, we can calculate a maximal robust invariant

set S∞ with respect to the admissible set Θ. Given S∞

and the corresponding integers {α1, . . . , αq} obtained from

Algorithm 1, we can use Algorithm 2 to derive a cyclic

measurement schedule ensuring

θ(0) ∈ Θ ⇒ θ(t) ∈ Θ, ∀ t > 0.

In the reference tracking problem for the system (7) with

constrained communication, the set Θ bounds the tracking

error. It is then natural to question what is the smallest set

Θ for which schedulability can be guaranteed, given the

communication constraints. The solution of such a problem

provides a measure of the performance of the controlled

system, while tracking an arbitrary trajectory, provided the

initial tracking error is sufficiently small.

Define for each subsystem i, an admissible error set

Θi(γi) := {θi ∈ R
n : Miθi ≤ γi1}, (9)

where 1 is the vector with unit elements, Mi is a suitable

matrix, and γi ∈ R+. We can formulate a third control

problem:

Problem 3 (Minimization of Θ). Given a controlled system

(7) with error dynamics (8), along with a set of measurement

matrices C, solve

min
γ1,...,γq

(γ1, . . . , γq) , (10a)

s.t.
∑

i

1

αi(γi)
≤ 0.7, (10b)

Note that the problem (10) is a multi-objective optimiza-

tion problem, for which multiple Pareto optimal solutions

may exist.

V. NUMERICAL RESULTS

Next, results from numerical simulations are shown for

three examples, where the communication scheduling ap-

proaches proposed in Sec. III-IV are applied. In particular

Example 1, discussing a simple case with three decoupled

systems, illustrates the necessary condition for schedulability

given by Theorem 3; examples 2 and 3 discus a trajectory

tracking problem for a multiagent model.

Example 1 (Necessary condition for schedulability (Theo-

rem 3)). Consider a set of three 1-dimensional systems

xi(k + 1) = xi(k) + ui(k) + vi(k), (11)

where the states, inputs, and disturbances are constrained

within the sets Xi = {−1 ≤ xi ≤ 1},Ui = {−1 ≤
ui ≤ 1},Vi = {−ṽi ≤ vi ≤ ṽi} , i = 1, 2, 3, and ṽ1 =
0.4, ṽ2 = 0.25, ṽ3 = 0.12. With the state-feedback control

law ui(k) = −xi(k), it is straightforward to show that

S∞i = Xi, ∀ i, and α1 = 2, α2 = 3, and α3 = 7. The

density for this problem is 0.7 < ρ = 41
42 < 1 and, according

to Theorem 3, the existence of an admissible measurement

schedule for the system (11) it is not guaranteed. Indeed,



Fig. 2. State, input, and disturbance trajectories for the three subsystems
in Example 1. The shaded bands identify state values out of the admissible
set, and the input values out of bound.

subsystem 1 (with α = 2) needs communicating every 2

steps, and subsystem 2 (with α = 3) must therefore fill in

all remaining communication slots, leaving no slots available

for subsystem 3, regardless of its α-value.

The effect of the lack of schedulability on the behavior

of the three closed-loop subsystems is shown in Fig. 2,

where the schedule δ(t) = {1, 2, 1, 2, 1, 2, 3, 2, . . .} has been

adopted, and the disturbances are set to their upper bounds.

We can see that the state of subsystem 1 leaves the admissible

set at t = 7, when the state of subsystem 3 is measured

instead of that of 1.

Example 2 (Reference tracking for remote-controlled ve-

hicles). Consider now the case of five remotely controlled

vehicles, described by the models

xi(t+ 1) = Aixi(t) +Biui(t) + Fivi(t), ∀ i

where

Ai =





1 h 0
0 1 h
0 0 1− h

τi



 , Bi =





0
0
h
τi



 , Fi =





0
0
1



 ,

and τ1 = 0.1, τ2 = τ3 = 0.5, τ4 = τ5 = 2, h = 0.2.

The longitudinal motion of the five vehicles must track

the five reference trajectories in Fig. 3 within prescribed error

bounds, to realize a specified traffic scenario. Such situations

occur, for instance, when setting up full-scale test scenarios

for driver-assist systems.

The reference state trajectories are generated by the fol-

lowing dynamical model

xr
i (t+ 1) = Aix

r
i (t) +Biu

r
i (t), ∀ i

while the tracking inputs are defined as

ui(t) = Ki (x̂i(t)− xr
i (t))

︸ ︷︷ ︸

u
fb
i

(t)

+ Biu
r
i

︸ ︷︷ ︸

u
ff
i

(t)

, ∀ i,

0 50 100 150 200
0

200

400

0 50 100 150 200
0

10

20

0 50 100 150 200
-1

0

1

0 50 100 150 200

-2

0

2

Fig. 3. Reference trajectories for the five vehicles.

where uff
i (t) are feed-forward terms and the gains of the

feedback terms ufb
i (t) are

K1 =
[
12.5000 7.5000 0.5000

]
,

K2 = K3 =
[
62.4999 37.5000 6.5000

]
,

K4 = K5 =
[
249.9997 149.9999 29.0000

]
.

The feedback terms ufb
i (t) are constrained to belong to the

sets Ui = {−4 ≤ ufb
i ≤ 1.5}, ∀ i, while the disturbances are

assumed to be bounded within the sets Vi = {−ṽi ≤ vi ≤
ṽi} with ṽ1 = 0.06, , ṽ2 = ṽ3 = 0.0015, ṽ4 = ṽ5 = 0.0005.

By defining the tracking errors as θi = xi − xr
i and

their estimates as θ̂i = x̂i − xr
i , the errors dynamics

can be derived as in (7). For each system, the tracking

errors should be kept within the following bounds Θi ={[
−1
−0.1

]

≤

[
1 0 0
0 1 0

]

θi ≤

[
1
0.1

]}

, ∀ i.

Algorithm 1 calculates the following α1 = 4, α2 =
α3 = 17, α4 = α5 = 19, while Algorithm 2 calculates

the following cyclic schedule, of which we report one full

cycle:

δ = {1, 2, 3, 4, 1, 5, 1, 1}. (12)

Note that feasible schedules with shorter cycle length would

be possible: Algorithm 2 does not necessarily return a

minimal schedule.

The tracking errors for the above schedule, along with the

corresponding feedback control actions and the disturbances,

are reported in Fig. 4, and are compared with those obtained

with a simple round-robin schedule in Fig. 5. While the

measurement schedule (12) keeps the position and velocity

errors of all systems within the prescribed bounds, with the

round-robin schedule, the velocity tracking error of one of

the subsystems exceeds the bounds.

Example 3 (Minimization of the bounds on the tracking

errors). In this example, we solve Problem 3 for the problem

considered in Example 2. Let us define the geometry of the



Fig. 4. The five colours identify state (θ1i , θ
2
i ) and feedback input u

fb
i

trajectories of the five vehicles, with measurement schedule (12). The shaded
bands identify state values out of the admissible set, and input values out
of bound. Notice that all subsystems remain within their admissible sets.

Fig. 5. Trajectories of the five vehicles with a round-robin measurement
schedule, colour coding as in Fig. 4. Notice that the blue subsystem’s θ2

state leaves the admissible set at t = 12, due to inappropriate scheduling.

admissible set with the matrix

Mi =







0.1 0 0
0 1 0

−0.1 0 0
0 −1 0






, ∀i, (13)

in (9). The solution of (10) leads to γ1 = γ2 = ... = γ5 =
0.0600, with S∞ = A. Given (13), this corresponds to the

following error bounds:

−0.6 ≤ θ1i ≤ 0.6, ∀ i,

−0.06 ≤ θ2i ≤ 0.06, ∀ i,

and α1 = 3, α2 = α3 = 13, α4 = α5 = 16, ρ(I) = 0.6122.
A cyclic measurement schedule satisfying the constraints is

δ = {1, 2, 3, 1, 4, 5}. Note that the calculated γ1 provide

significantly smaller bounds than the ones used in Example

2.

VI. CONCLUSIONS

We have discussed a new class of reachability and verifi-

cation problems for networked controlled systems. We have

linked the reachability problem to the Pinwheel Problem,

and we have used results from the scheduling literature to

solve the control and measurement schedule design. Our

hypotheses on the network structure and communication

constraints encompass some examples of practical interest,

but are nonetheless quite restrictive. More challenging the-

oretical questions arise if we allow a richer communication

structure or a more complex network topology; in these cases

the requirements and constraints on communication between

network nodes will likely map onto more complex structures

than the Pinwheel Problem. Our results can provide some

intuition as to how these scenarios can be tackled.
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